
Submodule construction for systems of timed I/O
automata*

J. Drissi1, G. v. Bochmann2

1 Dept. d'IRO, Université de Montréal, CP. 6128, Succ. Centre-Ville, Montréal, H3C 3J7,
Canada, Phone: (514) 343-6161, Fax: (514) 343-5834, drissi@iro.umontreal.ca

2 School of Information Technology & Engineering, University of Ottawa ,
Colonnel By Hall (A510), P.O.Box 450 Stn A,Ottawa,Ont.,K1N 6N5, Canada,
Phone : (613) 562-5800 ext. 6205, Fax 562-5175 , bochmann@site.uottawa.ca

Abstract. This paper addresses the problem of designing a submodule of a given system of
communicating timed I/O automata. The problem may be formulated mathematically by the
equation (C||X)rA under the constraint IX=In, where C represents the specification of the
known part of the system, called the context, A represents the specification of the whole
system, X represents the specification of the submodule to be constructed, || is a composition
operator, r is a conformance relation and In is the required set of inputs for X . As
conformance relation, we consider the safe realization relation. This relation is implied by all
the well known criteria of trace equivalence, complete trace equivalence, quasi equivalence and
reduction. We propose an algorithms for solving the problem with respect to the safe
realization and we characterize the set of solutions.

1 Introduction

One common problem, encountered in the hierarchical design of complex systems, in the synthesis

of controllers and in the reuse of components, is the submodule construction problem, also called

factorization problem or equation solving problem. The submodule construction problem (SCP) is

to construct the specification of a submodule X when the specification of the whole system and all

submodules except X are given. Such a problem may be formulated mathematically by the equation

(C||X)rA under the constraint IX=In, where C represents the specification of the known part of

the system, A represent the specification of the whole system, || is a composition operator and r is

a conformance relation and In is the required set of inputs for X. The SCP was first formulated and

treated in [Merl 83], where specifications are expressed in terms of execution sequences, and trace

equivalence was used as conformance relation. In [Shields 89], the author uses Milner's Calculus

of Communicating Systems to model the same problem. Many other works [Haghverdi 96][Qin

1991] have been done using labelled transition systems as a model for the specifications and the

strong and/or the observational equivalences as conformance relations. In [Drissi 99], we consider

* This work was supported by an NSERC Research grant.

2

this problem in the context of partial I/O automata for systems specification for various

conformance relations.

Real-time programs such as airplane controllers, real-time operating systems, switching

software and process controllers in manufacturing plants are inherently reactive, and their

interaction with the environment must occur in real-time. Others systems in which the explicit

notion of time plays an important role are communication systems and particularly communication

protocols; the performance of such systems vitally depends on the value of timers, which control

message retransmission. The correct operation of such systems is more than logical consistency in

terms of event sequences, and extends to the satisfaction of real-time constraint. Timed models

have been introduced for the specification and verification of real-time systems [Alur 94a]. In

[Maler 95], the authors show that the control synthesis problem is solvable when the plant

specification is given by a timed automaton. The solution is obtained by solving fixed-point

equations involving both discrete transition relations and linear inequalities.

In the above work, it is assumed that the controller can precisely observe the whole

configuration of the plant. However, in realistic situations the plant can be observed only up to

some equivalence relation on its states, and the controller has to operate under some uncertainty.

We generalize our previous work on submodule construction in the case of partial observation

[Drissi 99] by dealing with partial timed I/O automata for systems specification and by using the

safe realization as conformance relation.

The rest of the paper is structured as follows. In Section 2, we define basic notions. Section

3 presents the submodule construction problem and the architecture in which this problem will be

solved. In Section 4, we propose an algorithm which takes as input a timed I/O automaton A, a

timed I/O automaton C, and a set In such that (IA\IC)∪(OC\OA)⊆In⊆IA∪OC, and produces as

output a timed I/O automaton SolS (if it exists) with ISolS=In and OSolS=(IC\IA)∪(OA\OC), such

that the composition of C with SolS is a safe realization of A. Then we characterize the set of all

such solutions. Finally, in Section 5 we conclude the paper. The functions used in Algorithm 1 are

defined in detail in the annex.

2 Timed Input-Output Automata

2.1 Basic notions and definitions

In this paper, a timed I/O automaton (briefly TIOA) A, is a tuple (SA, IA, OA, XA, MA, TA, soA)

where SA is a finite set of states with soA as the initial state, IA is a non-empty, finite set of inputs,

OA is a non-empty, finite set of outputs with IA∩OA=Ø, XA is a finite set of clocks, MA is a

mapping that labels each state s in SA with some clock constraint - called state invariant and

3

denoted Inv(s) - in Φ(XA) and TA⊆SA×(IA∪OA)×2XA×Φ(XA)×SA is a transition set. An element

(s, u, λ, ϕ, s')∈TA represents a transition from state s to state s' on symbol u, the set λ⊆XA gives

the clocks to be reset with this transition and ϕ is a clock constraint over XA that specifies when the

transition is enabled. The set Φ(XA) of clock constraints is defined by the grammar :

ϕ := x≤c | x≥c | x<c | x>c | ϕ1∧ϕ2

where x is a clock in XA and c is a constant in the set N of nonnegative integers.

Definition 1 (k-polyhedral sets) [Maler 95]: Let k be a positive integer constant. For any positive

integer constant d, we associate with k three subsets of 2R:

Hk : the set of sets having one of the following forms : Rd, Ø, {v∈Rd : vi#c for i∈[1, d]},

{v∈Rd : vi-vj#c for i, j∈[1, d]}, for some #∈{<, ≤, >, ≥}, c∈{0, ..., k}.

Hk
∩ : the set of convex sets consisting of intersections of elements of Hk.

Hk
* : the set of k-polyhedral sets containing all sets obtained from Hk via union, intersection

and complementation.

For every k, Hk
* has a finite number of elements, each can be written as a finite union of

convex sets.

A clock interpretation ν for a set XA of clocks assigns a real value to each clock; that is, it is

a mapping from XA to the set R of nonnegative reals. We say that a clock interpretation ν for XA

satisfies a clock constraint ϕ over XA if and only if ϕ evaluates to true according to the values given

by ν. For δ∈R, ν+δ denotes the clock interpretation which maps every clock x to the value

ν(x)+δ. For Y⊆XA, ν[Y:=0] denotes the clock interpretation for XA which assigns 0 to each x∈Y,

and agrees with ν over the rest of the clocks.

While transitions are instantaneous, time can elapse in a state. In each state the automaton

can let time progress, i.e. it remains in the state and lets the values of the clocks increase uniformly

as long as the invariant is satisfied [Labroue 98]. Since the model of I/O automata makes a very

clear distinction between those actions that are performed under the control of the automaton -the

outputs- and those actions that are performed under the control of its environment -the inputs-, we

require that at least one transition labeled by an output action is enabled before the violation of the

invariant.

If for each s∈SA and all u∈IA and any clock interpretation ν that satisfies Inv(s) there exists

(s, u, λ, ϕ, s')∈TA such that ν also satisfies ϕ, then A is said to be completely specified or input-

enabled; otherwise A is partially specified. A TIOA A is said to be nondeterministic if there exists

(s, u, λ, ϕ, s')∈TA, (s, u, λ', ϕ', s")∈TA with s'≠s" and a clock interpretation ν that satisfies

simultaneously Inv(s), ϕ and ϕ' for some s and u; otherwise A is deterministic. The timed input-

4

enabled form of a TIOA A, denoted by Tief(A), is obtained as follow : for each state s1∈SA and an

input x1∈IA let Trans(s1, x1)={(s, x, λ, ϕ, s')∈TA | s=s1 and x=x1} the set of transitions starting

in s1 and labeled with x1, if the set of clock interpretations which satisfy ϕ(s1, x1), i.e. satisfy

Inv(s1) and do not satisfy any constraint ϕ presents inTrans(s1, x1), is not empty then we add (s1,

x1, XA, ϕ(s1, x1), FailA) to TA, where Fail is an additional special state.

We note that the clocks are fictitious clocks, invented to express the timing properties of a

TIOA, and all the clocks increase at an uniform rate corresponding to a fixed global time frame.

Initially, all the clocks are finitialized to 0. A clock can be reset to zero simultaneously with any

transition. At any instant, the reading of a clock equals the time elapsed since the last time it was

reset.

Consider the sequence σ=(a1, t1)...(ak, tk)∈((IA∪OA)×R)* with t1, ..., tk an increasing

suit of values in R and let ν1(x)=t1 for each x∈XA and νi+1=νi[λi:=0]+(ti+1-ti) for k-1≥i≥1, the

sequence σ is said to be a timed-trace from the state soA, if there exist states s1, ..., sk+1∈SA such

that s1=soA, (si, ai, λi, ϕi, si+1)∈TA, and νi satisfies Inv(si) and ϕi for each i =1,...,k. For a state

s in SA, the sequence σ in ((IA∪OA)×R)* is a timed-trace from the state s if there exists σ1=σ2σ in

((IA∪OA)×R)* such that σ1 is a timed-trace from the state soA and σ2 leads to s. The set of timed-

traces from the state s is denoted TtrA(s) and we denote it TtrA if s=soA. The property of non-

Zenoness requires that for an infinite sequence the suit t1, ..., tn ... is unbounded. For a

deterministic TIOA A, a state s and a sequence σ∈TtrA(s) uniquely determine the final state of the

trace σ which we denote sσ. A state s' of a TIOA A is reachable from a state s if there exists

σ∈TtrA(s) such that sσ=s'. If s is the initial state of A then s' is said to be reachable. The set {s1,

s2, ..., sk, sk+1}, denoted by S(s1, σ), represents the set of states reachable from s1 by a prefix of

σ. For each sequence σ∈(Σ×R)* and a subset Σ' of Σ, the Σ'-projection of σ, denoted PrΣ'(σ), is
obtained by deleting from σ each pair (a, t) such that a is not in Σ'. For simplicity, we denote also

by PrΑ(σ), the projection of σ over the alphabet (IA∪OA) of the TIOA A. For a set of traces Y, we

denote by PrΣ'(Y), the set containing the Σ'-projection of the elements in Y. For a set X containing

sets of traces, we denote by PrΣ'(X), the set {PrΣ'(Y)| Y∈X}.

The connected component of A containing the initial state is the TIOA CC(A)=(SC, IC, OC,

XC, MC, TC, soC) such that SC={s∈SA| s reachable}, IC=IA, OC=OA, XC=XA, MC=MA|SC,

TC={(s, u, λ, ϕ, s')∈TA| s∈SC} and soC=soA, the notation MA|SC represents the restriction of

MA to the set SC. If A=CC(A) then A is said to be initially connected.

We define a chaos TIOA, whose traces contain all the words over the alphabet, by

Ch=({ch}, I, O, Ø, True, H, ch), where H={(ch, t, Ø, true, ch) | t∈I∪O}.

5

2.2 The composition of Timed I/O automata

A system can be considered as a finite collection of TIOAs communicating with one another and

with the environment.

Definition 2 : Given two TIOAs A1=(SA1, IA1, OA1, XA1, MA1, TA1, so1) and A2=(SA2, IA2,

OA2, XA2, MA2, TA2, so2) such that OA1∩OA2=Ø and XA1∩XA2=Ø. The composition of A1 and

A2 denoted A1||A2, is defined as the connected component of the TIOA A=(SA, IA, OA, XA, MA,

TA, soA) where :

- SA=SA1×SA2,

- IA=(IA1∪IA2)\(OA1∪OA2),

- OA=OA1∪OA2,

- XA=XA1∪XA2,

- MA(s1, s2)=MA1(s1)∧MA2(s2)

- ((s1, s2), u, λ1∪λ2, ϕ1∧ϕ2, (s1', s2'))∈TA iff ϕ1∧ϕ2∧Inv((s1, s2))≠false and for all

i∈{1, 2}, if u∈(IAi∪OAi) then (si, u, λi, ϕi, si')∈TAi, else si=si', λi=Ø and ϕi=true,

- soA=(so1, so2).

The composition of TIOAs is commutative and associative. This composition allows a

number of composing TIOAs to accept the same input simultaneously.

We define a safety property which formalizes the non-occurrence of an unspecified

reception in the composition A of a collection of TIOA (Ai=(SAi, IAi, OAi, XAi, MAi, TAi,

soi))1≤i≤n. We denote by ε the empty word.

Definition 3 : Given a collection of TIOA (Ai=(SAi, IAi, OAi, XAi, MAi, TAi, soi))1≤i≤n, the

composition A=A1||A2||...||An is safe, written S(A), iff any word σ in ((IA∪OA)×R)* such that

PrAi(σ)∈TtrAi.((IAi×R)∪{ε}) for all i, is a timed-trace of A (i.e. σ∈TtrA).

2.3 Removing ε-transitions from a Timed I/O automaton

When a transition is considered as an invisible action we call it an ε-transition. An example

is an action which is internal in a composition. It is well known that in the untimed case such

transitions do not increase the expressive power of finite automata. In the case of timed automata,

the situation is different. The ε-transitions with clock resets strictly increase the power of timed

automata [Bérard 98].

In the case of ε-transitions without reset, i.e. ε-transitions which do no reset clocks, we

find in [Bérard 96] an algorithm to construct, given a TIOA, an equivalent one without such

6

internal transitions. This algorithm has two steps, it first suppresses the cycles of ε-transitions and

then the remaining ones. The purpose of an ε-transition without reset is only to check that the clock

constraint carried by the ε-transition is satisfied at some point in time. The main idea to remove this

ε-transition is to shift this verification either forward or backward. This is done by using the

forward closure or the backward closure of a clock constraint and by adding some new clocks.

Definition 4 : Let φ be a clock constraint. The forward closure of φ, denoted by φ→ , is a formula

which is satisfied by a clock valuation ν if φ is satisfied by the clock valuation ν-δ for some δ ≥0 :

ν |= φ→ if ∃δ ≥0, ν-δ |=φ

Definition 5 : Let φ be a clock constraint and let λ be a set of clocks. The backward closure of φ

with respect to λ, denoted by φ← λ
, is a formula which is satisfied by a clock valuation ν if φ is

satisfied by the clock valuation ν[λ:=0]+δ for some δ ≥0 :

ν |= φ← λ
 if ∃δ ≥0, ν[λ:=0]+δ |=φ

Example :

In this example we illustrate how we remove an ε-transition without reset. For the

automaton A we use the forward closure of the constraint φ2 to remove the ε-transition and we

obtain the automaton B. Note that a new clock xo and an associated constraint are necessary. This

method cannot be used when the ε-transition is not followed by a visible action. In order to remove

the ε-transition in the automaton C we use the backward closure of the constraint φ2 and we obtain

the automaton D.

A=
u φ1 λ11

, , ε φ2, , u φ3 λ33
, ,Ø

1 2 3 4

B=
u φ1 λ11

, , u λ33
, ,∪{x }ο xo=0∧φ2∧φ3 421

C=
u φ1 λ11

, , ε φ2, , Ø
1 2 3 D=

u φ11
, ,

1 3
φ2

λ1
λ 1∧ Ø

Figure 1: Two automata and their equivalent without ε-transitions

2.4 Minimization of the number of clocks of a Timed I/O automaton

The number of clocks used in a specification mainly grows for two reasons. First,

7

specifications are often written in high-level description languages and later compiled into timed

automata having a number of clocks proportional to the number of time-outs that appear in the

description. However, these time-outs are rarely active at the same time, and hence, the number of

clocks can be reduced. Second, complex systems are described as the composition of simpler

components each having a small number of clocks. It turns out that, due to the synchronization of

transitions, many clocks are simultaneously reset and therefore they will be equal for some time

since they all proceed at the same speed. Clearly in this case, only one of these clocks is really

necessary.

Taking into account these observations, the authors in [Daws 96] propose a method for

reducing the number of clocks of a timed automaton by combining two algorithms. The first one

consists of detecting active clocks. Intuitively, a clock is active at some state if its value at the state

may influence the future evolution of the system. This may happen whenever the clock appears in

the invariant condition of the state or is tested in the condition of some of the outgoing edges. The

values of inactive clocks at state s are not relevant to the evolution of the system at s. This means

that the number of clocks required is equal to the greatest number of active clocks in all states. The

second algorithm consists of detecting pairs of clocks that are always equal. Two clocks are equal

in a state if for every incoming edge they are both reset or are equal in the source location and none

is reset.

2.5 Tightening the constraints

Given a TIOA A, some transitions will never be fired since the constraints associated with

such transitions are always false when we reach the corresponding states. Removing these

transitions from A will not change the set TtrA. There have been a number of works dealing with

this problem [Courcoubetis 91][Somé 97]. The region graph [Alur 94a] corresponding to the TIOA

A can be used to remove such transitions but the complexity is polynomial in the number of states

and edges of A and exponential in the number of clocks and the binary length of the constants that

appear in the constraints. In [Somé 97] the author propose an algorithm based on the propagation

of clock relations which allows the detection of such transitions. Intuitively, we will find for each

state the set of clock interpretations which are satisfied in the state and update the constraints

associated with each outgoing transition. Then each transition for which the updated constraint is

false will be removed.

Example :

The example of Figure 2 illustrates the propagation of clock relations. For example in state

3, vsup(x, 1) means that the value of the clock x is superior to 1 at this state. The transition (3, c,

8

x<1, Ø, 4) will never be fired. Hence this transition can be removed from the automaton.

a, true, {y}

b, y=1, Ø
c, x<1, Ø

d, x>1, Øc, x<1, Ø

a, y<1, {y}

{vsup(x, 1), vsup(y, 1), sup(x,y)}

{veq(x, 0),
 veq(y, 0),
eq(x, y)}

{vsup(x, 0),
 veq(y, 0),
sup(x, y)}

{vsup(x, 0),
 vsup(y, 0),
sup(x, y)}

1 2

3

4

Figure 2 : Propagation of clock relations approach

2.6 The safe realization relation

Definition 6 : For a TIOA A and a composite TIOA B=B1||B2||...||Bn, with IA=IB, we say that B

realizes A with safety, written B ≤S A, iff

i - for every TIOA E, with IE=OA and OE=IA, S(E||A) implies S(E||B1||B2||...||Bn),

Definition 6 means that for any environment E over the alphabet of A, if the composition of

A and E is safe then the composition of B1, B2, ..., Bn and E must also be safe, i.e. in any

reachable state of the composition E||B1||B2||...||Bn, there is no unspecified reception.

The reflection Ã of a TIOA A represents the most liberal timed-environment in with A is

safe, i.e. Ã must accept all the outputs produced by A and nothing more, and produces all the

inputs accepted by A. Since A may be non-deterministic, each state s of Ã must have the following

properties :

- The sets of outputs of s will be equal to the intersection of the sets of inputs of all the states

of A which are reachable by a timed trace leading to s.

- The set of inputs of s will be equal to the union of the sets of outputs of all the states of A

which are reachable by a timed trace leading to s.

For the construction of Ã, we use two functions RestrictOutputs and AugmentInputs. The

first function takes a TIOA A and produces a TIOA RestrictOutputs(A) for which all the states

which are reachable by a common timed trace produce the same set of outputs (the intersection of

the sets of outputs of the corresponding states in A). The second function takes a TIOA A and

produces a TIOA AugmentInputs(A) for which all the states which are reachable by a common

timed trace accept the same set of inputs (the union of the sets of inputs of the corresponding states

in A). In the case of a deterministic TIOA A, we have RestrictOutputs(A)=AugmentInputs(A)=A.

9

Definition 7 : The reflection of a TIOA A=(SA , IA , O A , XA , M A , TA , soA) is the TIOA

Ã=AugmentInputs(RestrictOutputs((SA, IÃ, OÃ, XA, MA, TA, soA))) where IÃ=OA, OÃ=IA.

Lemma 1: For a TIOA A and a composite TIOA B=B1||B2||...||Bn, with IA=IB, the following

propositions are equivalent :

i - S(Ã||B1||B2||...||Bn),

ii - for every TIOA E, with IE=OA and OE=IA, S(E||A) ⇒ S(E||B1||B2||...||Bn).

2.7 The timed-safe realization relation

Definition 8 : For a TIOA A and a composite TIOA B=B1||B2||...||Bn, with IA=IB, we say that B

realizes A with T-safety, written B ≤TS A, iff

i - B ≤S A,

ii - for every state (s, s1, s2, ..., sn) in Ã||B1||B2||...||Bn, Inv((s1, s2, ..., sn)) implies Inv(s).

Definition 8 means that B1||B2||...||Bn, realizes A with safety, moreover, for each state (s1,

s2, ..., sn) in B1||B2||...||Bn such that (s, s1, s2, ..., sn) is in Ã||B1||B2||...||Bn the invariant Inv((s1,

s2, ..., sn)) implies Inv(s).

3 The design of a submodule

3.1 The architecture

We consider the class of systems which can be represented by two TIOA that communicate with

one another and with an environment (Figure 3). One TIOA, called the context C, models the

known part of the system, the behavior of which is given, while the other deterministic TIOA,

called the new component Comp, represents the behavior of a certain component of the system (the

submodule to be designed). The set of inputs accepted by the system from the environment can be

divided into three disjoint sets. The first is the set of inputs of the context C non observable by the

component, the second is the set of inputs of the context observable by the component, and the

third represents the set of inputs observable by the component, but not visible by the context.

Similarly, the set of outputs delivered by the system to the environment can be divided in three

disjoint sets. The first is the set of outputs delivered by the context C to the environment which are

not observable by the new component, the second is the set of outputs delivered by the context C to

the environment which are observable by the component, and the third represents the set of outputs

of the component accepted by the environment and not delivered to the context. In addition, the

context and the component can communicate with internal actions not observable by the

environment.

10

OA

IA

?Context C

External inputs of C non-observable
 by the component

External inputs of C observable by the component

Internal inputs of C

Internal outputs of C

External outputs of C
non-observable by the component

External outputs of C observable by the component

Component

External inputs which are not in the input
 alphabet of the context

 External outputs which
 are not produced by the context

Figure 3: The composition of two communicating components C and Comp

3.2 The problem

The problem is known as the problem of submodule construction, redesign or equation solving,

where an appropriate conformity criterion should hold between a designed system and its given

specification A and where the system consists of a given component C and a new component X to

be designed. In this paper, we consider this problem as a problem of equation solution in the realm

of TIOA for the equation (C||X)≤SA under the constraint IX=In with X being a free variable and In

a given set of inputs, which satisfies the constraint (IA\IC)∪(OC\OA)⊆In⊆IA∪OC.

4 The solution for the safe realization relation

4.1 The proposed method

We use a chaos TIOA Chaos which represents all the traces over the input alphabet In and the

output alphabet (IC\IA)∪(OA\OC); any solution of (C||X)≤S A is trace included in Chaos. The main

idea of our approach is to remove from Chaos all the timed-traces which combined with timed-

traces of the context C in the environment Ã may cause a non-safe behavior. This will allow us to

capture the set (if not empty) of the permissible timed-traces of the component to be designed in the

form of a TIOA SolS, called the generic safe solution. A permissible timed-trace is a timed-trace of

a solution of (C||X)≤S A. For this purpose, we construct the timed input-enabled forms of A' and

C', where A' is obtained from A by thigtening the constraints and then removing all the invariants

and C' is obtained from C by thigtening the constraints. We construct the composition

R=Tief(C')||Chaos ||Tief(A′) which is equal to Tief(C')||Tief(A′). Since we consider the safe

realization relation, we replace all the invariants in R by true. In the case of partial observation, i.e.

In⊂IA∪OC, we must hide all the transitions labelled with actions in (IA∪OC)\In. We require that

11

all those transitions do not reset clocks. The obtained automaton will be in general a non

deterministic one. Since the class of deterministic TIOA is strictly included in the class of non

deterministic TIOA [Alur 94b], we must transform our automaton before removing a transition

leading to the state Fail. Two states reachable with a common timed-trace in the transformed

automaton must accept the same set of inputs and produce the same set of outputs. We give in the

next paragraph an algorithm which constructs the generic safe solution. As input, the algorithm

requires two TIOAs C and A and a set In such that (IA\IC)∪(OC\OA)⊆In⊆IA∪OC. The set In

define the input set for the generic solution.

4.2 Description of Algorithm 1

We present in this subsection, the principles of the five steps of our algorithm. The annex

includes more details about the algorithm.

Input : The specification of the context C, the specification of the system A and a set of inputs In.
Output : A TIOA SolS with ISolS=In such that (C||SolS)≤SA if there is such a solution.

Step 1 : Completing the automata and tightening their constraints

We construct the timed input-enabled forms of A' and C', where A' is obtained from A by

thigtening the constraints and then removing all the invariants and C' is obtained from C by

thigtening the constraints.

Step 2 : Composition

We construct the composed automaton R:=Tief(C')||Tief(A′). Each time we reach a state of R

which contains FailC' or FailIA′ we replace it by FailR.

Step 3 : Clock minimization

We replace all the invariants in R by true then we minimize the number of clocks in R.

Step 4 : Eliminating ε-transitions

We replace in R all the actions which are not in In∪(IC\IA)∪(OA\OC) by the invisible action ε.

Then we transform R into an equivalent TIOA without ε-transitions. For this purpose, we first

remove all the ε-transitions which lead to a silent state, and for each state p where there exists an

outgoing transition labelled by an ε-transition we add a new clock xp which is reset by any

transition entering the state p. Then,

• for each path p1
ε, Ø , ϕ 1

 p 2 . . . p k
ε, Ø , ϕ k

 p k +1
u, λ , ϕ k+1

 pk+2, where

(pi)1≤i≤k+1 are distinct states, we add the transition (p1, u, λ, xp1=0∧ϕ1∧...∧ϕk∧ϕκ+1, pk+2).

12

• for each path p1
u, λ , ϕ 1

 p2
ε, Ø , ϕ2

 . . . p k
ε, Ø , ϕ k

 FailR1
, where (pi)1≤i≤k

are distinct states, we add the transition (p1, u, Ø, ϕ1∧

λ

xp2=0∧ϕ2∧... ∧ϕk -1∧ϕk , FailR1
).

• for each path soR
ε, Ø , ϕ 1

 p2 ... pk
ε, Ø , ϕ k

 FailR, we add the transition (soR, E, Ø,

ϕ1∧...∧ϕk -1∧ϕk, FailR1
), where E is new label.

Finally we remove all the ε-transitions. The obtained automaton is denoted R1.

Step 5 : Eliminating transitions leading to Fail
In this step we will remove from R1 all the traces which lead to FailR1

. Unlike the untimed case, a

transition leading to FailR1
 can be avoided if it is possible to put in the state an invariant which

disables this transition by leaving the state before the time of occurrence of the transition.

Part 1 : In this part, we will use the function Remove_E_transitions which takes as input a TIOA

and returns, if possible, a TIOA without E_transitions; else it returns "NO SOLUTION". An

E_transition is due to a sequence of interaction between the environment and the context leading to

the Fail state without intervention of the component to be designed. The function

Remove_E_transitions tries to find an invariant to put in the initial state of the component to be

designed such that its earliest interaction with the environment or the context will prohibit the

completion of the sequence of interaction leading to the Fail state.

Part 2 : Since the component to be designed will be obtained in the form of a non deterministic

TIOA, the environment and the context cannot precisely observe the state of the component. All

states of the component which are reachable by a given timed trace must accept the same set of

inputs. For this purpose we use the previously defined function AugmentInputs which will take as

input the TIOA obtained at the end of Part 1 and return a TIOA which has the above property.

Part 3 : Now we are ready to deal with the transitions leading to the Fail state. We use the function

Remove_Fail which takes as input the TIOA obtained at the end of Part 2 and removes from it, if
possible, all the timed traces leading to the Fail state. For each transition (s, u, Ø, ϕ2, FailR1

) we

first propagate this transition, i.e. we transform our automata to obtain one where all the states

reachable by a timed trace leading to s, have a transition which leads with action u and under
constraint ϕ2 to FailR1

. To remove this transition there are many cases. For example (Figure 4), if

x1 is an input action and Inv(s)=true, we consider the constraint Φ =(ϕ∨
ϕ∈CONSTRANS

)∧(ϕ2∧¬ϕ2)
Ø

where CONSTRANS is the set of all the constraints associated with transitions starting in s and

labelled by outputs. If Φ≠false, we put Inv(s)=
Ø

Φ ∨¬ ϕ2
Ø

 to disable the transition (s, x1, Ø, ϕ2,

13

FailR1
) and each ingoing transition (s', u', λ', ϕ', s) is duplicated into two transitions (s', u', λ',

ϕ'∧Inv(s)λ', s) and (s', u', Ø, ϕ'∧¬Inv(s)λ' , FailR1
) where Inv(s)λ' is the set of constraints

derived from Inv(s) by removing the constraints on clock in λ. Otherwise, we remove all the

outgoing transitions from s and replace s by FailR1
.

If we obtain an automaton at the end of this step we call it SolS.

4.3 Example for Step 5 :

In the following example we illustrate how we remove a transition leading to FailR1
. We

consider a state s with his ingoing and outgoing transitions. We have :

s

Fail
s s

s'
Inv (s')

true

1 2

u

z
z1

2
x1

φ

φ
φ φ

1

4
3

2

λ1

λ λ4
3

Ø

Inv (s)1 Inv (s)2 2 4

2

4

φ
4

φ3

φ4φ2

φ3

¬Inv (s)

x

y

s

Fail
s s

s'
Inv (s')

1 2

u

z
z1

2

φ

φ
φ

11

4
3

λ1

λ λ4
3

Inv (s)

Inv(s)1 Inv(s)2

u

φ12

Ø

Figure 4 : Illustration of removing a transition leading to FailR1
.

the constraint ϕ 1 is : (x ≤ 5) ∧ (y ≤ 4) ∧ (y ≥2) and λ 1 = { y }, the constraint ϕ 2 is :

(x≤5)∧(x≥3)∧(y≤4)∧(y≥2), the constraint ϕ3 is : (x≤2)∧(x≥1)∧(y≤2)∧(y≥1), the constraint ϕ4 is :

(x≤1)∧(y≤3)∧(y≥1), the obtained constraint Φ is : (x≤2)∧(y≤2)∧(y -x≤1), since Φ≠false the

obtained constraint
Ø

Φ is : (x≤2)∧(y≤2)∧(y -x≤1)∧(x -y≤1), and the obtained constraint ϕ2
Ø

 is :

(y -x≤1)∧(y≤4)∧(x≤5)∧(x -y≤3),

then Inv(s) will be : ((x≤2)∧(y≤2)∧(y -x≤1)∧(x -y≤1))∨(y -x>1)∨(y>4)∨(x>5)∨(x -y>3),

the constraint Inv(s){y} is : (x≤1)∨(x>3),

then ϕ11 will be : ((x≤1)∨(x>3))∧(y≤4)∧(y≥2) and ϕ12 will be : (x>1)∧(x≤3)∧(y≤4)∧(y≥2).

4.4 The set of solutions

Theorem 1 : Given two T I O A s A and C , and given a set I n such that

(IA\IC)∪(OC\OA)⊆In⊆IA∪OC, if Algorithm 1 produces a TIOA SolS then it is a solution to the

submodule construction problem, i.e. (C || SolS) ≤S A for the case IX=In. Otherwise there is no

solution to this problem.

The solution obtained by Algorithm 1 is generic, which means that we can derive from it all

14

the solutions for the equation (C || X) ≤S A under the constraint IX=In.

Theorem 2 : Given two T I O A s A and C , and given a set I n such that

(IA\IC)∪(OC\OA)⊆In⊆IA∪OC, if Algorithm 1 produces an TIOA SolS then for any TIOA B, with

IB=In and OB=(IC\IA)∪(OA\OC), the following propositions are equivalent :

i - B≤TSSolS,

ii - B is a solution of the equation (C || X) ≤S A .

5 Conclusion

We have presented in this paper an approach to solve the problem of submodule construction in the

realm of timed I/O automata. This problem may be formulated mathematically by the equation

(C||X)rA under the constraint IX=In, where C represents the specification of the known part of

the system, A represents the specification of the whole system, X represents the specification of the

submodule to be constructed, || is a composition operator, r is a conformance relation and In is

the required set of inputs for X. The conformance relation considered is the safe realization

relation. We consider the case where the non-observable interactions between the context and the

environment does not reset clocks. The set of solutions to the equation (if they exist) can be

represented as the set of timed-safe realizations of a timed I/O automaton SolS. An algorithm for

finding SolS is given.

The approach considered in this paper may be extended to treat the problem of submodule

construction for other conformance relations, like for example the conforming implantation relation

[Drissi 99] which imposes constraints on the outputs produced in each state of the whole system.

Another interesting problem is the case where the non-observable interactions between the context

and the environment may reset clocks. Further work will be done in these directions.

References

[Alur 94a] R. Alur and D. L. Dill, A theory of timed automata, Theoretical Computer Science,

126:183-235, 1994.

[Alur 94b] R. Alur, L. Fix and T. A. Henzinger, A determinizable class of timed automata, In

Proceedings of CAV'94, Lecture Notes in Computer Science, vol. 818, pp. 1-13, 1994.

[Bérard 96] B. Bérard, P. Gastin and A. Petit, On the power of non observable actions in timed

automata, In Proceedings of STACS'96, number 1046 in Lecture Notes in Computer

Science, pp. 257-268, Springer Verlag, 1996.

[Bérard 98] B. Bérard, V. Diekert, P. Gastin and A. Petit, Characterization of the expressive

power of silent transitions in timed automata, In Fundamenta Informaticae, 36(2):145-182,

1998.

15

[Courcoubetis 91] C. Courcoubetis and M. Yannakakis, Minimum and maximum delay

problems in real-time systems, In proceedings of CAV'91, number 575 in Lecture Notes in

Computer Science, pages 399-409, Spinger Verlag, 1991.

[Daws 96] C. Daws and S. Yovine, Reducing the number of clock variables of timed automata,

In Proceedings of RTSS'96, Whasington DC, USA, Dec. 4-6, 1996.

[Drissi 99] J. Drissi and G. v. Bochmann, Submodule construction for systems of I/O

automata, Technical Report no. 1133, DIRO, University of Montreal, 1999.

[Haghverdi 96] E. Haghverdi and H. Ural, An Algorithm for Submodule Construction,

Technical report of the Department of computer Science, University of Ottawa, 1996.

[Labroue 98] A. Labroue, Conditions de vivacité dans les automates temporisés, Research Report

LSV-98-7, Sep. 1998, Laboratoire Spécification et Vérification, Ecole normale supérieure de

Cachan, France. http://www.lsv.ens-cachan.fr.

[Lynch 88] N. A. Lynch and M. R. Tuttle, An introduction to input/output automata,

MIT/LCS/TM-373, Laboratory for computer science, Massachusetts Institute of Technology,

Nov. 1998.

[Lynch 92] N. A. Lynch and H. Attiya, Using mappings to prove timing properties, Distributed

Computing, 6:121-139, 1992.

[Maler 95] O. Maler, A. Pnueli and J. Sifakis, On the Synthesis of Discrete Controllers for

Timed Systems, In Proceedings of 12th Annual Symposium on Theoretical Aspects of

Computer Science, Munich, Germany, March 1995, Lecture Notes in Computer Science,

vol. 900, pp. 229-242.

[Merl 83] P. Merlin and G. v. Bochmann, On the Construction of Submodule Specifications

and Communication Protocols, ACM Trans. on Programming Languages and Systems, Vol.

5, No. 1 (Jan. 1983), pp. 1-25.

[Merritt 91] M. Merritt, F. Modugno and M. R. Tuttle, Time-Constrained Automata, In

Proceedings of CONCUR'91, Lecture Notes in Computer Science, vol. 527, pp. 408-423,

Amsterdam, August 1991.

[Qin 1991] H. Qin and P. Lewis, Factorisation of finite State Machines under Strong and

Observational Equivalences, Journal of Formal Aspects of Computing, Vol. 3, pp 284-307,

July-Sept. 1991.

[Shields 89] M. W. Shields, Implicit System Specification and the Interface Equation, Computer

Journal, Vol. 32, 5, pp. 399-412, Oct. 1989.

[Somé 97] S. s. Somé, Dérivation de specification à partir de Scénarios d'interaction, Thèse de

doctorat, DIRO, Université de Montréal, 1997.

16

Annex

Notations :
νo is the clock interpretation defined by νo(x)=0 for each clock x in XA;

ϕλ= the constraint derived from ϕ by replacing the clocks in λ by 0;

CONSTR(λ)= the set of constraints x=0 where x is a clock in λ;

RestrictOutputs(TIOA A) : TIOA

FOR each state s in A DO

TEMP=A;

Remove from TEMP all the states from which there exists no path leading to s;

ITEMP=IA∪OA;

OTEMP=Ø;

Rename all the clocks in TEMP;

TEMP=TEMP ||A;

Remove from TEMP all the states from which there exists no path leading to (s,s') with s'≠s;
Add to A the states (s

1
, s

2
) of TEMP with s

1
≠s

2
;

FOR each state (s
1
, s

2
) of TEMP DO

IF s
1
≠s

2
 THEN

FOR each transition ((s
1
, s

2
), u, λ, ϕ, (s

3
, s

4
)) in TEMP DO

IF s
3
≠s

4
 THEN

Add the transition ((s
1
, s

2
), u, λ, ϕ, (s

3
, s

4
)) to A;

ELSE
Add the transition ((s

1
, s

2
), u, λ, ϕ, s

3
) to A;

Add the transition ((s
1
, s

2
), u, λ', ϕ', s

4
) to A to complete the corresponding

transition (s
2
, u, λ', ϕ'', s

4
) in A with ϕ'=ϕ''∧¬ϕ;

FOR each transition (s
2
, u', λ', ϕ', s') in A DO

IF u' is not already in a transition starting from (s
1
, s

2
) THEN

Add the transition ((s
1
, s

2
), u', λ', ϕ', s') in A;

ELSE
FOR each transition ((s

1
, s

2
), u, λ, ϕ, (s

3
, s

4
)) in TEMP DO

IF s
3
≠s

4
 THEN

Add the transition (s
1
, u, λ, ϕ, (s

3
, s

4
)) in A;

Replace the transition (s
1
, u, λ', ϕ', s

4
) in A by (s

1
, u, λ', ϕ'∧¬ϕ, s

4
);

FOR each state (s, s
2
) of A DO

FOR each transition (s, u, λ, ϕ, s
3
) in A with u[OA DO

Replace each transition ((s, s
2
), u, λ', ϕ', s') in A by ((s, s

2
), u, λ, ϕ∧ϕ', s') in A;

17

AugmentInputs(TIOA R1) : TIOA
FOR each state s≠FailR1

 in R1 DO

TEMP=R1;

Remove from TEMP all the states from which there exists no path leading to s;
ITEMP=IR1

∪OR1
;

OTEMP=Ø;

Rename all the clocks in TEMP;

TEMP=TEMP ||R1;
Remove from TEMP the states (s', FailR1

) and all the transitions leading to them;

Remove from TEMP all the states from which there exists no path leading to (s, s') with s'≠s
and s'≠FailR1

;

Add to R1 the states (s
1
, s

2
) of TEMP with s

1
≠s

2
;

FOR each state (s
1
, s

2
) of TEMP DO

IF s
1
≠s

2
 THEN

FOR each transition ((s
1
, s

2
), u, λ, ϕ, (s

3
, s

4
)) in TEMP DO

IF s
3
≠s

4
 THEN

Add the transition ((s
1
, s

2
), u, λ, ϕ, (s

3
, s

4
)) to R1;

ELSE
Add the transition ((s

1
, s

2
), u, λ, ϕ, s

3
) to R1;

Add the transition ((s
1
, s

2
), u, λ', ϕ', s

4
) to R1 to complete the corresponding

transition (s
2
, u, λ', ϕ'', s

4
) in R1 with ϕ'=ϕ''∧¬ϕ;

FOR each transition (s
2
, u', λ', ϕ', s') in R1 DO

IF u' is not already in a transition starting from (s
1
, s

2
) THEN

Add the transition ((s
1
, s

2
), u', λ', ϕ', s') in R1;

ELSE
FOR each transition ((s

1
, s

2
), u, λ, ϕ, (s

3
, s

4
)) in TEMP DO

IF s
3
≠s

4
 THEN

Add the transition (s
1
, u, λ, ϕ, (s

3
, s

4
)) in R1;

Replace the transition (s
1
, u, λ', ϕ', s

4
) in R1 by (s

1
, u, λ', ϕ'∧¬ϕ, s

4
);

FOR each state (s, s
2
) of R1 DO

FOR each transition (s, u, λ, ϕ, s
3
) in R1 DO

IF u[IR1
 THEN

PresConst :={ϕ' | ((s, s
2
), u, λ', ϕ', s') in R1};

ϕ'' := ϕ ∧¬(ϕ′∨
ϕ′∈PresConst

);

Add the transition ((s, s
2
), u, λ, ϕ'', s

3
) in R1;

18

Remove_E_transitions(TIOA R1) : TIOA
WHILE there exists a transition (soR, E, Ø, ϕ1, FailR1

) DO

CONSTRANS={ϕ | (soR, u, λ, ϕ, s')[TR1, s'≠FailR1
 and u[(IC\IA)∪(OA\OC)};

Φ =(ϕ∨
ϕ∈CONSTRANS

)∧(ϕ1∧¬ϕ1)
Ø

;

IF νo satisfy Øϕ1 THEN

IF Φ ∧CONSTR(XR1)≠Ø THEN
Delete the transition (soR, E, Ø, ϕ1, FailR1

);

Inv(soR):=Inv(soR)∧(
Ø

Φ ∨¬ Øϕ1);

thigten all the constraints in R1;

FOR each ingoing transition (s, u, λ, ϕ, soR)[TR1 DO

IF ϕλ ∧¬Inv(soR) ≠Ø THEN

Replace (s, u, λ, ϕ, soR) by (s, u, λ, ϕ ∧Inv(soR)λ, soR);

Add in R1 the transition (s, u, Ø, ϕ ∧¬Inv(soR)λ, FailR1
);

ELSE return " NO SOLUTION"; STOP;

ELSE
Delete the transition (soR, E, Ø, ϕ1, FailR1

);

IF Φ ≠Ø THEN

Inv(soR):=Inv(soR)∧(
Ø

Φ ∨¬ Øϕ1);

thigten all the constraints in R1;

FOR each ingoing transition (s, u, λ, ϕ, soR)[TR1 DO

IF ϕλ ∧¬Inv(soR) ≠Ø THEN

Replace (s, u, λ, ϕ, soR) by (s, u, λ, ϕ ∧Inv(soR)λ, soR);

Add in R1 the transition (s, u, Ø, ϕ ∧¬Inv(soR)λ, FailR1
);

ELSE
FOR each ingoing transition (s, u, λ, ϕ, soR)[TR1 DO

IF ϕλ ∧ Øϕ1 ≠Ø THEN

Replace (s, u, λ, ϕ, soR) by (s, u, λ, ϕ ∧(¬ Øϕ1)λ, soR);

Add in R1 the transition (s, u, Ø, ϕ ∧(Øϕ1)λ, FailR1
);

19

Remove_Fail(TIOA R1) : TIOA
WHILE there exists a transition (s, u, λ, ϕ2, FailR1

) DO

TEMP:=R1;

Remove from TEMP all the states from which there exists no path leading to s;

Add to TEMP the state FailTEMP and the transition (s, u, λ, ϕ2, FailTEMP);

ITEMP=IR1
∪OR1

; OTEMP=Ø;

Rename all the clocks in TEMP;

TEMP=TEMP ||R1;
Remove from TEMP the states (s', FailR1

) and all the transitions leading to them;

Remove from TEMP all the states from which there exists no path leading to (FailTEMP, s')
with s'≠FailR1

;

Add to R1 the states (s
1
, s

2
) of TEMP with s

1
≠s

2
;

FOR each state (s
1
, s

2
) of TEMP with s

1
≠FailTEMP DO

IF s
1
≠s

2
 THEN

FOR each transition ((s
1
, s

2
), u1, λ1, ϕ1, (s

3
, s

4
)) in TEMP DO

IF s
3
≠s

4
 THEN Add the transition ((s

1
, s

2
), u1, λ1, ϕ1, (s

3
, s

4
)) to R1;

ELSE Add the transition ((s
1
, s

2
), u1, λ1, ϕ1, s

3
) to R1;

Add the transition ((s
1
, s

2
), u1, λ', ϕ', s

4
) to R1 to complete the corresponding

transition (s
2
, u1, λ', ϕ'', s

4
) in R1 with ϕ'=ϕ''∧¬ϕ1;

FOR each transition (s
2
, u', λ', ϕ', s') in R1 DO

IF u' is not already in a transition starting from (s
1
, s

2
) THEN

Add the transition ((s
1
, s

2
), u', λ', ϕ', s') in R1;

ELSE
FOR each transition ((s

1
, s

2
), u1, λ1, ϕ1, (s

3
, s

4
)) in TEMP DO

IF s
3
≠s

4
 THEN

Add the transition (s
1
, u1, λ, ϕ, (s

3
, s

4
)) in R1;

Replace the transition (s
1
, u, λ', ϕ', s

4
) in R1 by (s

1
, u, λ', ϕ'∧¬ϕ, s

4
);

Replace each state (FailTEMP, s') by FailR1
;

IF s≠soR1
 THEN

IF u[(IC\IA)∪(OA\OC) THEN

IF ¬Inv(s)∧ϕ2=Ø THEN
Remove the transition (s, u, λ, ϕ2, FailR1

);

Replace the transitions (s, u, λ', ϕ', s') by (s, u, λ', ¬ϕ2∧ϕ', s');

ELSE
CONSTRANS={ϕ | (s, u, λ, ϕ, s')[TR1, s'≠FailR1

 and u[(IC\IA)∪(OA\OC)};

20

IF Inv(s)∧¬(ϕ2∧¬(ϕ∨
ϕ∈CONSTRANS

)¬Inv(s)
Ø

)=Ø THEN

Remove all the outgoing transitions from s;
Replace s by FailR1

;

R1:=CC(R1);

ELSE
Remove the transition (s, u, λ, ϕ2, FailR1

);

Replace the transitions (s, u, λ', ϕ', s') by (s, u, λ', ¬ϕ2∧ϕ', s');

Inv(s)=Inv(s)∧¬(ϕ2∧¬(ϕ∨
ϕ∈CONSTRANS

)¬Inv(s)
Ø

);

thigten all the constraints in R1;

FOR each ingoing transition (s', u', λ', ϕ', s)[TR1 DO

IF CONSTR(λ')∧Inv(s) ≠Ø THEN

IF (ϕ')λ' ∧¬Inv(s) ≠Ø THEN

Replace (s', u', λ', ϕ', s) by (s', u', λ', ϕ'∧Inv(s)λ' , s);

Add in R1 the transition (s', u', Ø, ϕ'∧¬Inv(s)λ' , FailR1
);

ELSE Replace (s', u', λ', ϕ', s) by (s', u', Ø, ϕ', FailR1
);

ELSE
CONSTRANS={ϕ | (s, u, λ, ϕ, s')[TR1, s'≠FailR1

 and u[(IC\IA)∪(OA\OC)};

Φ =(ϕ∨
ϕ∈CONSTRANS

)∧(ϕ2∧¬ϕ2)
Ø

;

IF Inv(s)∧(
Ø

Φ ∨¬ ϕ2
Ø

)=Ø THEN

Remove all the outgoing transitions from s;
Replace s by FailR1

; R1:=CC(R1);

ELSE
Delete the transition (s, u, λ, ϕ2, FailR1

);

Inv(s):=Inv(s)∧(
Ø

Φ ∨¬ ϕ2
Ø

);

thigten all the constraints in R1;

FOR each ingoing transition (s', u', λ', ϕ', s)[TR1 DO

IF CONSTR(λ')∧Inv(s) ≠Ø THEN

IF (ϕ')λ' ∧¬Inv(s) ≠Ø THEN

Replace (s', u', λ', ϕ', s) by (s', u', λ', ϕ'∧Inv(s)λ' , s);

Add in R1 the transition (s', u', Ø, ϕ'∧¬Inv(s)λ' , FailR1
);

21

ELSE Replace (s', u', λ', ϕ', s) by (s', u', Ø, ϕ', FailR1
);

ELSE
IF u[(IC\IA)∪(OA\OC) THEN

IF ¬Inv(s)∧ϕ2=Ø THEN
Remove the transition (s, u, λ, ϕ2, FailR1

);

Replace the transitions (s, u, λ', ϕ', s') by (s, u, λ', ¬ϕ2∧ϕ', s');

ELSE
CONSTRANS={ϕ | (s, u, λ, ϕ, s')[TR1, s'≠FailR1

 and u[(IC\IA)∪(OA\OC)};

IF νo satisfy Inv(s)∧¬(ϕ2∧¬(ϕ∨
ϕ∈CONSTRANS

)¬Inv(s)
Ø

) THEN

Remove the transition (s, u, λ, ϕ2, FailR1
);

Replace the transitions (s, u, λ', ϕ', s') by (s, u, λ', ¬ϕ2∧ϕ', s');

Inv(s)=Inv(s)∧¬(ϕ2∧¬(ϕ∨
ϕ∈CONSTRANS

)¬Inv(s)
Ø

);

thigten all the constraints in R1;

FOR each ingoing transition (s', u', λ', ϕ', s)[TR1 DO

IF (ϕ')λ' ∧¬Inv(s) ≠Ø THEN

Replace (s', u', λ', ϕ', s) by (s', u', λ', ϕ'∧Inv(s)λ' , s);

Add in R1 the transition (s', u', Ø, ϕ'∧¬Inv(s)λ' , FailR1
);

ELSE return " NO SOLUTION"; STOP;

ELSE
CONSTRANS={ϕ | (s, u, λ, ϕ, s')[TR1, s'≠FailR1

 and u[(IC\IA)∪(OA\OC)};

Φ =(ϕ∨
ϕ∈CONSTRANS

)∧(ϕ2∧¬ϕ2)
Ø

;

IF νo satisfy Inv(s)∧(
Ø

Φ ∨¬ ϕ2
Ø

) THEN

Delete the transition (s, u, λ, ϕ2, FailR1
);

Inv(s):=Inv(s)∧(
Ø

Φ ∨¬ ϕ2
Ø

);

thigten all the constraints in R1;

FOR each ingoing transition (s', u', λ', ϕ', s)[TR1 DO

IF (ϕ')λ' ∧¬Inv(s) ≠Ø THEN

Replace (s', u', λ', ϕ', s) by (s', u', λ', ϕ'∧Inv(s)λ' , s);

Add in R1 the transition (s', u', Ø, ϕ'∧¬Inv(s)λ' , FailR1
);

ELSE return " NO SOLUTION"; STOP;

